“Transparent Hugepages” is a Linux kernel feature intended to improve performance by making more efficient use of your processor’s memory-mapping hardware. It is enabled (“enabled=always
”) by default in most Linux distributions.
Transparent Hugepages gives some applications a small performance improvement (~ 10% at best, 0-3% more typically), but can cause significant performance problems, or even apparent memory leaks at worst.
What are hugepages?
For decades now, processors and operating systems have collaborated to use virtual memory to provide a layer of indirection between memory as seen by applications (the “virtual address space”), and the underlying physical memory of the hardware. This indirection protects applications from each other, and enables a whole host of powerful features.
x86 processors, like many others, implement virtual memory by a page table scheme that stores the mapping as a large table in memory 1. Traditionally, on x86 processors, each table entry controls the mapping of a single 4KB “page” of memory.
While these page tables are themselves stored in memory, the processor caches a subset of the page table entries in a cache on the processor itself, called the TLB. A look through the output of cpuid(1)
on my laptop reveals that its lowest-level TLB contains 64 entries for 4KB data pages. 64*4KB is only a quarter-megabyte, much smaller than the working memory of most useful applications in 2017. This size mismatch means that applications accessing large amounts of memory may regularly “miss” the TLB, requiring expensive fetches from main memory just to locate their data in memory
Primarily in an effort to improve TLB efficiency, therefore, x86 (and other) processors have long supported creating “huge pages”, in which a single page-table entry maps a larger segment of address space to physical memory. Depending on how the OS configures it, most recent chips can map 2MB, 4MB, or even 1GB pages. Using large pages means more data fits into the TLB, which means better performance for certain workloads.
What are transparent hugepages?
The existence of multiple flavors of page table management means that the operating system needs to determine how to map address space to physical memory. Because application memory management interfaces (like mmap(2)
) have historically been based on the smallest 4KB pages, the kernel must always support mapping data in 4KB increments. The simplest and most flexible (in terms of supported memory layouts) solution, therefore, is to just always use 4KB pages, and not benefit from hugepages for application memory mappings. And for a long time this has been the strategy adopted by the general-purpose memory management code in the kernel.
For applications (such as certain databases or scientific computing programs) that are known to require large amounts of memory and be performance-sensitive, the kernel introduced the hugetlbfs feature, which allows administrators to explicitly configure certain applications to use hugepages.
Transparent Hugepages (“THP” for short), as the name suggests, intended to bring hugepage support automatically to applications, without requiring custom configuration. Transparent hugepage support works by scanning memory mappings in the background (via the “khugepaged
” kernel thread), attempting to find or create (by moving memory around) contiguous 2MB ranges of 4KB mappings, that can be replaced with a single hugepage.
What goes wrong?
When transparent hugepage support works well, it can garner up to about a 10% performance improvement on certain benchmarks. However, it also comes with at least two serious failure modes:
Memory Leaks
THP attempts to create 2MB mappings. However, it’s overly greedy in doing so, and too unwilling to break them back up if necessary. If an application maps a large range but only touches the first few bytes, it would traditionally consume only a single 4KB page of physical memory. With THP enabled, khugepaged
can come and extend that 4KB page into a 2MB page, effectively bloating memory usage by 512x (An example reproducer on this bug report actually demonstrates the 512x worst case!).
Pauses and CPU usage
In steady-state usage by applications with fairly static memory allocation, the work done by khugepaged
is minimal. However, on certain workloads that involve aggressive memory remapping or short-lived processes, khugepaged
can end up doing huge amounts of work to merge and/or split memory regions, which ends up being entirely short-lived and useless. This manifests as excessive CPU usage, and can also manifest as long pauses, as the kernel is forced to break up a 2MB page back into 4KB pages before performing what would otherwise have been a fast operation on a single page.
Several applications have seen 30% performance degradations or worse with THP enabled, for these reasons.
Where is it advisable to disable them?
It is advisable to disable transparent hugepages in database engines. For example on Oracle they recommend setting hugepages instead of MongoDB leaving completely disabled.
if you want to disable the transparent hugepages on Debian or Ubuntu systems you can follow this guide and for Centos/Redhat/Oracle Linux systems you can follow this guide